GMR KAMALANACA ENERGY LTD

22nd National Award For Excellence in Energy Management

FY-2020-21

A journey towards improved energy performance with approach of sustenance and innovation

Presenting by :

- 1. Puspahash Mohanty (Manager OS&E)
- 2. Ashish Jena (AGM OS&E)
- 3. Manoj Mishra (O&M head)

CONTENTS

- 1. GMR at a glance
- 2. Energy management policy and certificates.
- 3. Energy consumption overview.
- 4. Specific energy consumption last 3 years
- 5. Benchmarking of KPI
- 6. Energy conservation projects in last 3 years
- 7. Innovative project in FY 21
- 8. Renewable energy project
- 9. Environment management .
- 10. Green supply chain management
- 11. Best practices –Non energy efficiency
- 12. Energy management System
- 13. Budget allocation.
- 14. Award and accolades.
- 15. Learning from CII

Sardar Vallabhbhai Patel

Deliver the Promise

We value a deep sense of responsibility and self-discipline, to meet and surpass on commitments made

TenAzing & Hillary

Teamwork & Relationships

Going beyond the individual-encouraging boundary less behaviour

Dr. APJ Abdul Kalam

Respect for Individual We will treat others with dignity, sensitivity and honour

Mahatma Gandhi

Humility We value intellectual modesty and dislike false pride and arrogance

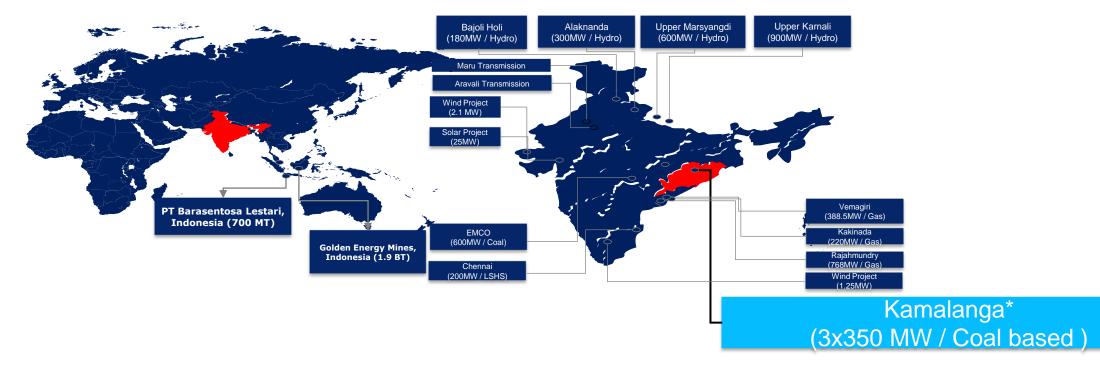
Swami Vivekananda Learning & Inner Excellence

We cherish the life long commitment to deepen our self awareness, explore, experiment and improve our potential

Mother

Social Responsibility Anticipating and meeting relevant and emerging needs of society

JRD Tata


Entrepreneurship We seek opportunities they are everywhere

1. GMR AT A GLANCE

GMR Kamalanga Energy Limited is a wholly owned subsidiary of GMR Energy LTD and is a step down subsidiary of GMR Infrastructures LTD.

Products/Businesses of organization : Electricity Generation

Capacity : 1050 MW - (3x350 MW)

Operational since: April 2013.

FSA

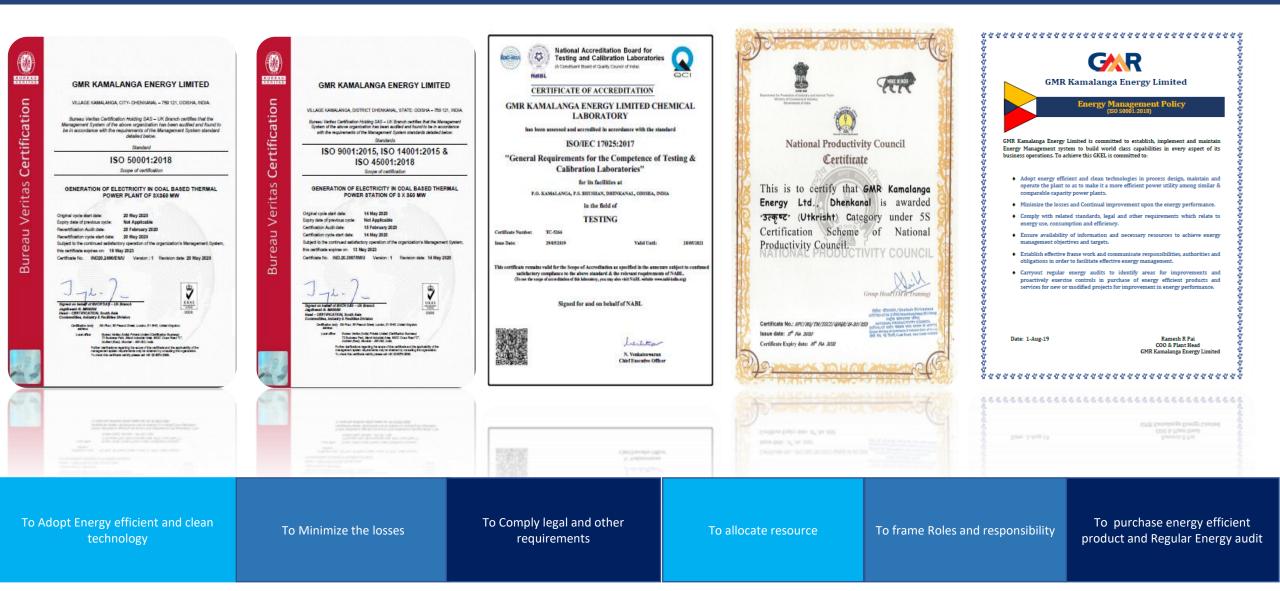
GKEL is having FSA with MCL

- FSA LINKAGE 2.14 Million MT
- SAKTI LINKAGE 1.50 Million MT
 WATER SOURCE 24 Cusec BRAMHANI RIVER

PPA

- DISCOM BIHAR PPA 260 MW 25 Years
- DISCOM HARYANA PPA 323 MW -25 years
- DISCOM GRIDCO PPA 247 MW 25 years
- BALANCE POWER -150 MW

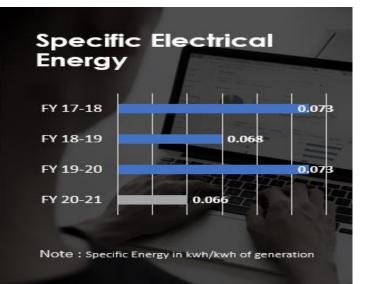
Plant Facility

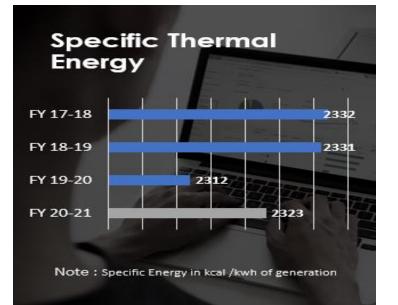

- BOILER HARBIN
- TURBINE Donfang Turbine company
- GENERATOR Donfang Electric company
- BFP Turbine Donfang Turbine company

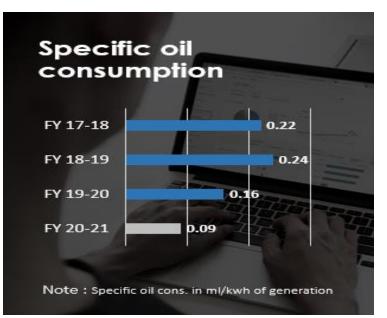
2. ENERGY MANAGEMENT POLICY AND CERTIFICATES

3. ENERGY CONSUMPTION OVERVIEW FY 2020-21.

Annual Generation	: 7101.09 MU
PLF	: 77.6 %
Availability	: 85.16 %
Gross Heat Rate	: 2323 kcal/kwh
Auxiliary Power	: 6.68 %
UHR (UNIT 1/2/3)	: 2322/2319/2328 Kcal/kwh
BOILER EFFICIENCY	: 86.52/87.1/86.9 %
DM Water consumption	: 0.2%
Raw Water Consumption	: 2.23 M3/ MWh generation
Specific Oil Consumption	: 0.097 ml/ KWh generation

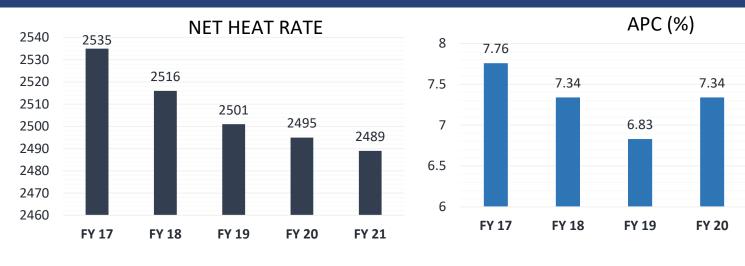






4. SPECIFIC ENERGY CONSUMPTION LAST 3 YEARS.

	Specifi	c energy consump	tion	Improvement in specific consumption w.r.t base line						
Financial	Electrical	Thern	nal	Electrical	Thermal	Oil				
year		Heat rate	Specific oil							
	Kwh/kwh gen	(kcal/kwh)	(ml/Kwh)	(%)	(%)	(%)				
FY -17-18	0.07341	2332	0.220							
FY -18-19	0.06826	2331	0.240	7.015	0.043	-9.091				
FY -19-20	0.07338	2312	0.160	0.041	0.858	27.273				
FY -20-21	0.0668	2323	0.097	9.004	0.386	55.909				



5. BENCHMARKING OF KPI 5.1 Internal Benchmarking

HEAT RATE (kcal/kwh)

2350

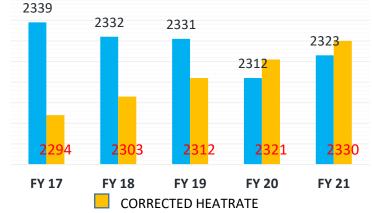
2340

2330

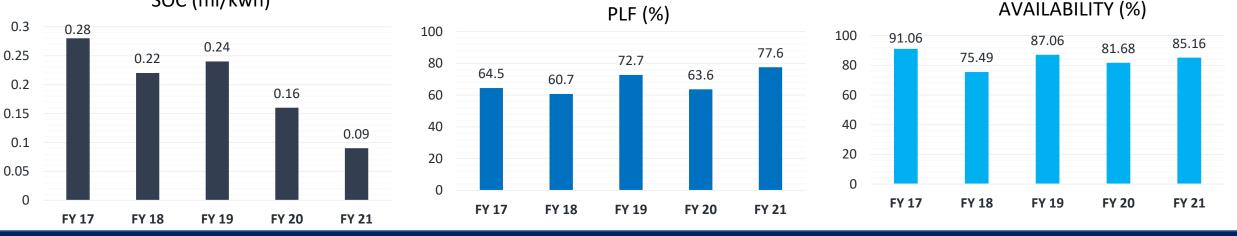
2320

2310

2300


2290

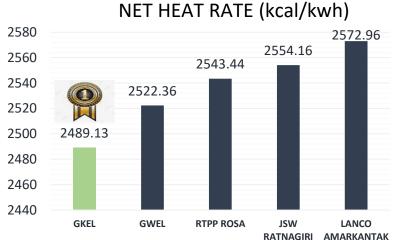
2280


2270

6.68

FY 21

SOC (ml/kwh)



NOTE: Heat rate in compared with corrected design heat rate with aging (as per OEM curve). Increase in heat rate is due to drop in HP and IP turbine efficiency and increase in APH O/L temp. which to be addressed in next overhauling cycle

5. BENCHMARKING OF KPI5.2 External Benchmarking

SOC (ml/kwh)

0.13

RTPP ROSA

0.09

JSW

RATNAGIRI

0.09

LANCO

AMARKANTAK

0.15

GWEL

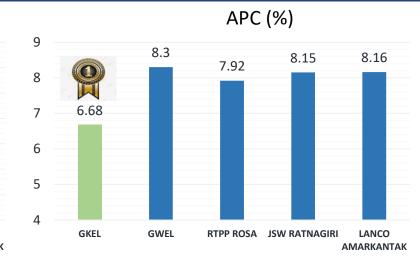
0.16

0.14

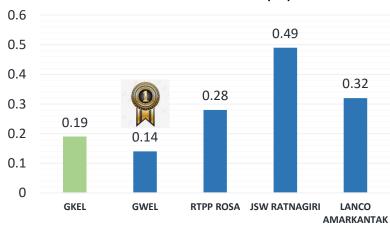
0.12

0.1

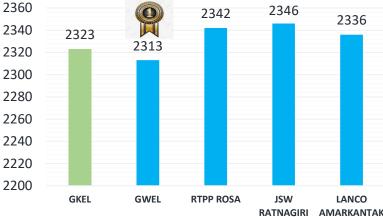
0.08

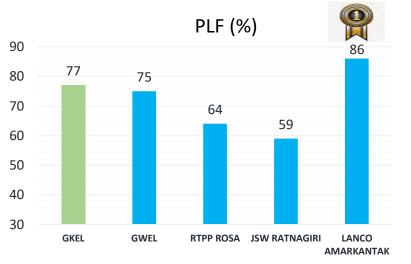

0.06

0.04


0.02

0.09


GKEL



DM water (%)

HEAT RATE (kcal/kwh)

GKEL is equipped with TDBFP so benchmarking done with Net heat rate.

5. BENCHMARKING OF KPI 5.3 Road Map to create benchmarking

FUTURE TARGET FOR APC:

- GKEL presently achieved 5.83 % APC at full load against 7.55% design & normative APC 6.25%.
- GKEL aims to achieve 5.75 % by 2022.

External and internal benchmarking

- Set Energy objective and target
- Identification of EC project
- Budget allocation EC projects
- Establishment of better monitoring system
- Action plan development

Deviation analysis

- RCA for each deviation ٠
- Monitoring CAPA through distal ATR
- Project effectiveness study
- Sustenance

MONITORING

PLANNING

MOTIVATION

EXECUTION

- Prioritization of project
- Implementation of action plan.
- Adopt best practices of sector Training and awareness.
- Strengthening green supply chain.
- EC action beyond the boundary

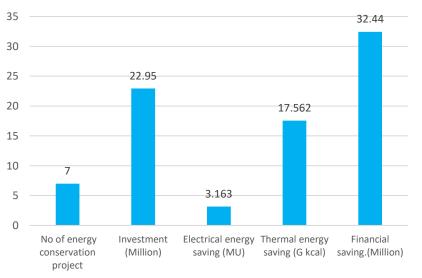
- Reward and recognition. In business level and group level
- Work shop for energy conservation idea.
- Appreciation in forum

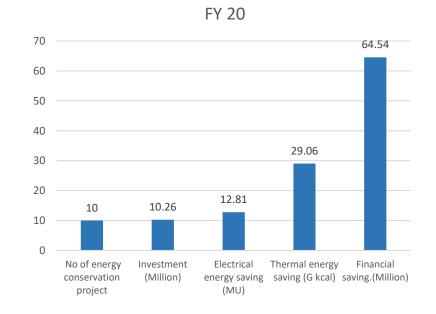
FUTURE TARGET FOR HEAT RATE:

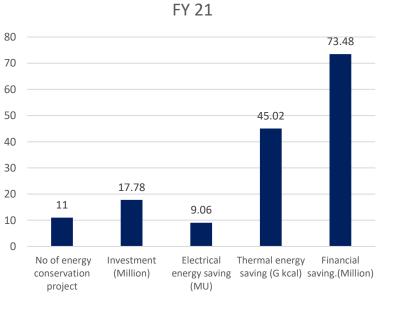
- GKEL presently achieved 2315 kcal/kwh Heat rate at full load against 2227 design.
- GKEL aims to achieve 2305 Kcal/kwh by 2022 considering aging of machine.

5.4 WAY FORWARD PLAN FOR ENERGY CONSERVATION .

SL No.	Description of energy conservation measures	Investment (Lakh)	Verified Energy saving (Lakh)	Verified energy saving unit (L Kwh)	Fuel (TPH)
1	APH basket replacement (0.5% BE improvement)	25	225	0	11114
2	Installation of IFC	40	39.3	13.1	0
3	ESP hopper heater power consumption optimization.	0.5	24	08	0
4	VFD in Seal air fan	15	36.3	12.1	0
5	Migration from Conventional to LED	13	9	3	0
6	HIP overhauling (unit 1)	200	422	0	18336
	Total	293.5	755.6	41.3	29450






6.ENERGY CONSERVATION PROJECT LAST 3 YEARS

Financial Year	No of energy conservation project	Investment (Million)	Electrical energy saving (MU)	Thermal energy saving (G kcal)	Financial saving. (Million)
FY 19	7	22.95	3.163	17.562	32.44
FY 20	10	10.26	12.81	29.060	64.54
FY 21	11	17.78	9.06	45.02	73.48

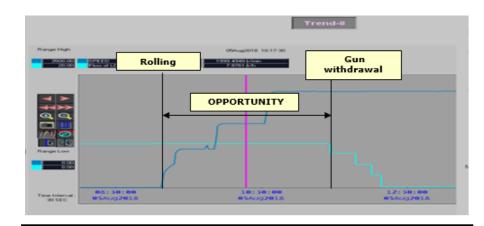
FY 19

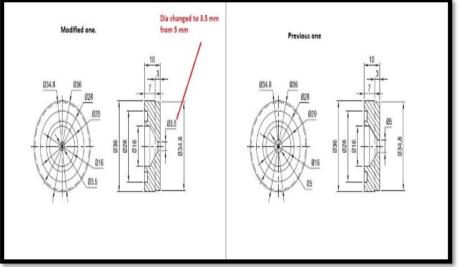
7. INNOVATIVE PROJECT IN FY 21

Specific oil consumption reduction by reducing oil nozzle diameter.

- Why innovative: GKEL is equipped with mechanical atomized oil gun which is having low turn down ratio. In house design and modification of oil nozzle diameter done and effective use of lower capacity oil gun during start up results in achieving lower specific oil consumption.
- Energy Savings achieved: Reduced oil consumption 1.9 KL/gun to 1.2 KL/gun.
- Financial saving achieved: 1.55 Crore
- Investment : 2 Lacs
- Replicability : Yes (For mechanical high pressure atomized oil gun)

IDENTIFICATION OF OPPORTUNITY


- During idle period of rolling high oil flow is not required where oil consumption can be optimised
- During mill stabilization after synchronization oil consumption rate can be optimized after coal mill proven. High pressure oil gun turn down ratio is low which constraints for optimization. To maintain steam parameter steam dumping was being done which is a loss.


POSSIBLE SOLUTION

- Conversion of high pressure system low pressure air atomization.
- Procurement low flow oil gun.
- Diameter reduction of existing oil gun

IMPLEMENTATION

- Oil gun diameter reduced by 30% with in-house design and local workshop assistance.
- Oil gun diameter reduced from 0.5 to 3.5 mm.
- Oil gun trail taken during start up with observation of flame intensity ,frequency.

7. INNOVATIVE PROJECTS IN FY 21

Specific oil consumption reduction by reducing oil nozzle diameter.

EFFECTIVE USE OF OIL GUN

- During start up activity up to Rolling parameter High pressure oil gun is used.
- During rolling 2 oil gun is changed to low pressure oil gun.
- During mill stabilization all oil gun changed to low pressure oil gun.

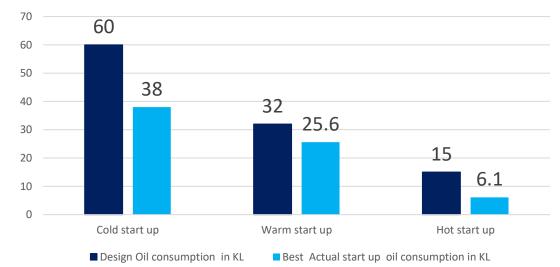
PRECAUSION MEASURES TAKEN.

- In-house preparation of APH Oil carry over probe.
- Flame intensity and frequency monitoring
- Flame observation in local
- Oil trace monitoring in bottom ash water.

ADAPTIBILITY

 This solution can be implemented in high pressure mechanical atomized gun .Up-to 30% diameter reduction there is no abnormality process deviation.

RESULT ACHIEVED


This solution helped in creating internal benchmark in oil consumption and start up time.

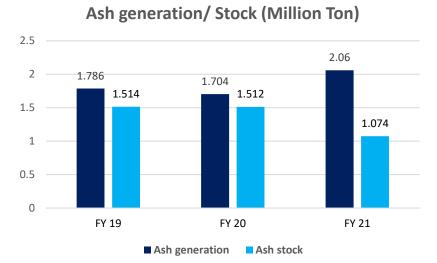
- Cold start up oil consumption reduction 36%
- Warm start up oil consumption reduction 20%
- Hot start up oil consumption reduction 33%

Apart from oil saving use of lower capacity oil gun in 2nd elevation edge in maintain rate of rise of boiler temp parameter before rolling leads to reduction of start up time

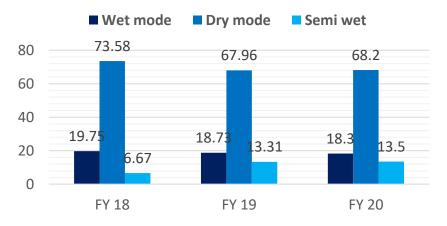
START UP OIL CONSUMPTION IN KL DESIGN VS BEST

8. RENEWBLE ENERGY PROJECT .

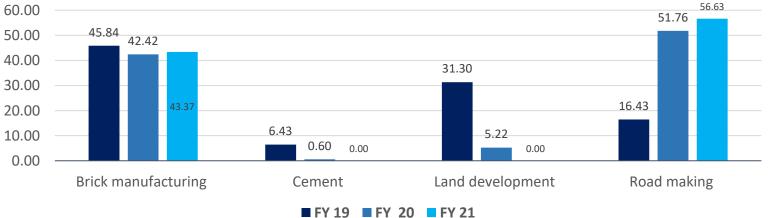
SL no.	Projects implemented	Capacity	Type of energy	(Generation Million KWh)
01	Wind operated Turbo ventilator installed (188 nos.) on TG Building and hydrogen builing.	250 Kwh	Wind	1.44
02	Security hub power supply from solar panel.	129 watt	Solar	0.001


Solar panel at security post

Turbo ventilators



9.1 ENVIRNOMENT MANGEMENT - ASH UTILIZATION



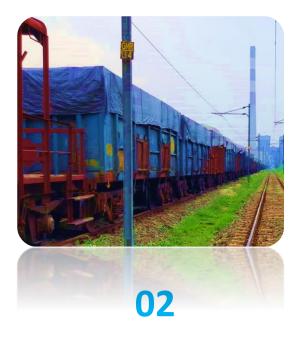
Ash utilization in % 120 115 115 110 106.79 105 100.11 100 95 90 FY 19 FY 20 FY 21

Ash handling modes (%)

Areas of ash utilization in MT

Modes of Ash Conveying

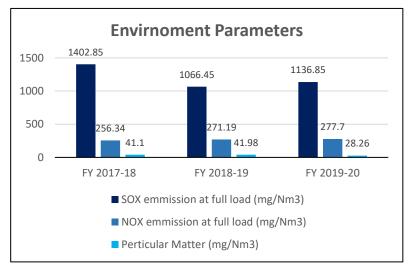
- Dry Ash conveying System with storage Silos
- Bottom Ash slurry conveying system with hydrobin water decanted system make it semi dry condition
- HCSD systems and ash pond with Ash water recovery System

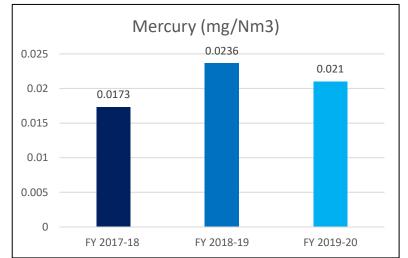


9.2 ENVIRNOMENT MANGEMENT - ASH UTILIZATION

In house Bricks/blocks making unit – products is being sold to other and also used in-house for repairing & construction work of Township.


Supply to NH Authority for road construction project through trucks and bulk discharge through rakes


Supply to bricks/block and cement manufacturing unit by bulkers

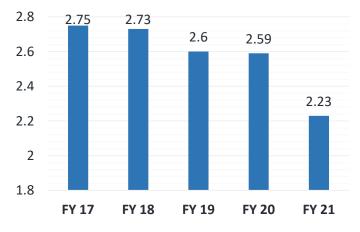


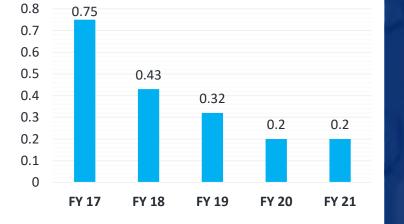
9.3 ENVIRNOMENT MANGEMENT – EMMISSION

Best Practices for Emission control

- Low NOx Burner and Over fire damper operation.
- Periodic checking of SADC for combustion control.
- Improvement in Fineness of coal particle
- Periodic replacement of Bag filters to control PM.
- Oxygen optimization for NOx control.
- Periodic monitoring of stack parameters.
- Daily ESP field healthiness monitoring.
- Online CEMS/ CEQMS is installed and data transmission to SPCB and CPCB
- Daily review of emission by EHS team

FGD installation is process and it will be commissioned by JULY-2023 as per CPCB direction .


9.4 ENVIRNOMENT MANGEMENT - WATER



FOG CANNON

Best Practices for reducing water load

- Replacement of drift eliminator .
- Water SCADA implementation .
- Rain water Harvesting by Rain water pump.
- Recuse of MFST blowdown
- Reduction of DM water.

Best Practices for waste water utilization ETP and STP for treating the water and used in

- Makeup to bottom ash handling system.
- Make up to Fire fighting storage tank.
- Truck wheel washing spray system.
- Ash Conditioning during loading .
- Boiler seal trough charging.
- Floor and road cleaning.
- Coal yard sprinkling
- DS system in CHP.
- Horticulture.

RAW water(m3/MWh

DM WATER

33.98

15.39

FY 21

Solid waste management(MT)

31.65

11.88

Output compost

FY 20

Input food and veg waste

9.5 ENVIRNOMENT MANGEMENT – WASTE UTILIZATION

1. Organic waste is being converted to manure through Mech bio-digester and utilized in organic farming and horticulture

90

80

70

60

50

40

30

20

10

0

80.14

12.64

FY 19

10. GREEN SUPPLY CHAIN MANAGEMENT .

Started Bulk ash disposal by rake as 2nd plant in ER thus reducing truck transport emission.

- 82102 tons transported
- 2737 truck eliminated
- 5.47 lakh km
- 182 kl Diesel consumption
- 488 TCO2 by truck
- 156 TCO2 by rail
- 332 TCO2 Net reduction

Spare part development and indigenization (SPDI) of 275 Nos of item.

Local vendor development reduces energy consumption in transportation

100% rake materialization reducing truck transport emission and energy consumption

E cart for goods transport inside plant which reduced 2.2 kl diesel consumption .

11. BEST PRACTICE – NON ENERGY EFFICIENCY

CFT – Turbine & Auxiliary Feed water ,Condensate system ,Hydrogen system

BASUDEV SWAIN / JITENDRANATH SARKAR

LUBRICATION PROGRAM DEVELOPMENT

Under LPD 25% Lube oil consumption reduced over last 2 years 55KL to 42KL. Lube oil no reduced to 25 from 28.

This initiative reduced the recourse depletion

RELIBILITY ENGINEERING

ABIRAL–A reliability improvement program initiated where 200 Nos of reliability issues identified under banner of ABIRAL. 20 no's of CFT formed to asses all processes.

1. Repeated failure analysis

Business

- 2. Critical spare management
- 3. Identification of process bottleneck.
- 4. RCA trough Six sigma approach.

WORKSHOP NO # 3

Lube Oil Quality Improvement through

Date : 10.12.2020 15:00 PM Venue: Coral

USE OF DIGITAL PLATFORM

 Compliance management, EHS management, Management Review & Sustainability reporting.
 SARATI portal for internal audits .
 Idea Factory for registration of individual idea

- 4. SIP digitalization for change management
- 5.ATR digitalization for tracking of CAPA.

11. BEST PRACTICE – NON ENERGY EFFICIENCY

AFFORESTATION

GKEL has fulfilled statutory requirement by effective plantation in 335 Acres

- Plantation of 3.9 Lakh sampling 1.
- Mass plantation in plant premises 2.
- Seedlings distribution to community 3.
- Planation in community. 4.
- 35 Acres landscape development 5.
- 2Acres of organic farming 6.

CSR

Web page and app developed named "krusaka bandhu" to facilitate farmers on.

- 1. Aggregation on information on various government schemes and links.
- 2. E-resources for farming like Govt. newsletters, notifications, E-books.

****38 =

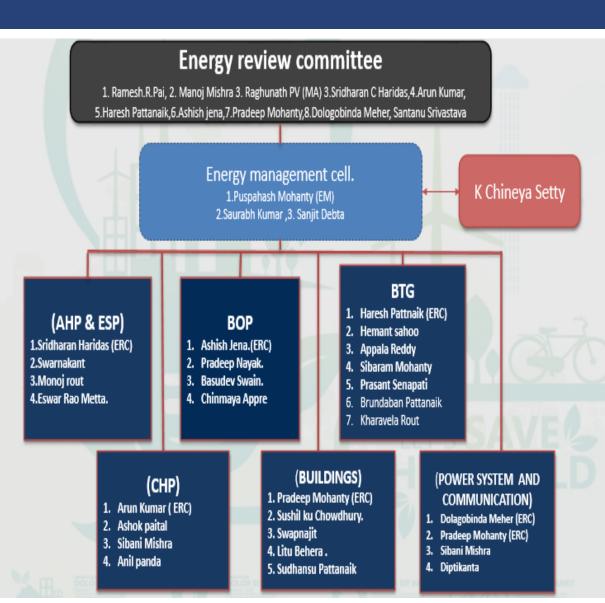
Installed

Our whole and sole moto behind developing this APP was to utilize basic modern digital technology for the welfare of Farmers in society, especially those who belongs to the deprived class towards this humongous development in field of digital world. We tried to link these people with digital platform in every sense that was possible for us to.

ASSET MANAGEMENT

1.SAP based maintenance 2. Preservation methodology 3.Min max process 4.Structure stability test. 5.Regulatory compliance 6. Waste management 7. Certification of ISO 55001 (Stage-1 in progress)

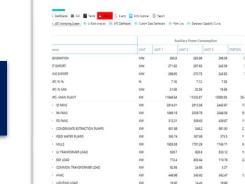
12. ENERGY MANGEMENT SYSTEM .


12.1 ENERGY MANGEMENT CELL

- Energy review committee : For overall review & support
- Energy management Cell : For Monitoring and developing
- Zonal members
- No of zones
- Involvement -
- Competency-
- Review
- No of zones .

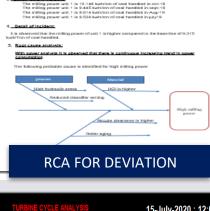
- : For field level execution .
 - : 6 zones better targeting and monitoring
- : 31 Nos of employees associated.
- : 7 BEE Certified energy auditors
 - : Energy review chaired by plant head
 - : 6 no's of zones for better focus

Objective of EMC to


- Monitoring of specific energy consumption area wise
- Deviation analysis of SEU and objective
- Preparation of action plan.
- Identification and cost benefit analysis of ENCON projects
- Awareness. And Training
- Ensure sustenance action plan.
- ISO 50001 standard requirement.

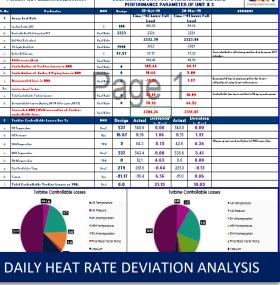
12. ENERGY MANGEMENT SYSTEM . 12.2 ENERGY MONITORING AND MEASUREMENT

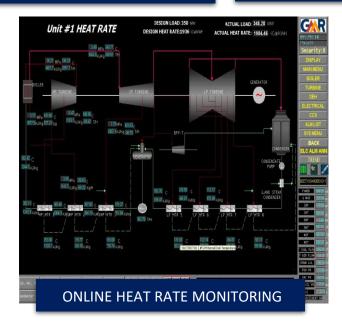
FORMAT NO - GKEL/18/OS#E/003/001

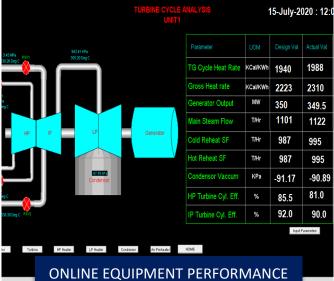

ONLINE POWER CONSUMPTION

NUALLIP	RT POWER COM	over the	I NLY UNI	100.00	0041 *0	869				WILL SPECIFIC POWER TREND MONTH
		-			_	_	_	_		_PERGEDBERGPERGEDBERGPERGEDBERG
	HIZ LIKE 9-3	-	_			107	1215	MICL.	-	
THE THE CONTENTS	10210210-3	10.000	01100		100	25	25	20		
BET T MPC	100		100	- 131	100	- 140	201	220	734	· 🔨
1111 MC	100	120	148	1.00	10	1.61	725	7.50	100	• 🚄 🖌
fatter abet ja20 auf machinen unffinne	141	10	100	2.60	118		728	726	722	
		12	2.4	8.54	3.23	ElE	101	2.23	22	
BT 2 hading famler		5.8	245	8.61	3.0	1.0	101	2.82	3.5	
All 2 hourses of ander		821	1136	5.21	ize	Lit	8.24	1.0	2.6	
fature locality funder		1.0	31.76	6.53	2.0	120	1130	1126	124	
terme are commercially			21.45	_	_	69.21	400.00	63.45	-	
IN NUMBER AND REAL TRANSPORT		82	21/6	42.5	11.2		2.0	0.76	254	
27.42 W PC		5.8	61.2	10.4	2113		15.0		20.20	
7		6.5	111	10.01	114				10.30	SPECIFIC FAIL POWER TREND MONTH
		10	1.48	10.11	1112		12.10		21	
*		4.2	4.71	10.10	1016	3.31	10.05	37.74	7.4	- 4000x/balavit - 4000x/balavit - 4000x/balavit
VICE AN OKNOW		1.2	410	12.10	11.7	2.74	1128	10.10	\$2.22	P
wawacijizaj		1.0	21.56	2.51	11.4	2.0	75:22	2.1		
WEDI		13	428	2.81		933	10.30	11.74	7.6	
ADDI (TAAA SADDAA)		@1)	6772	20.61	21.0	28.24	291.34	10134	10123	
TV SK		64.6	916	130	10424	10.0	22/10	50174	FEG	•
Torthed and Statett										•
TN NATION AND REALIZINGS	#20 10	6.0	6.58	12.3	42		634	111	626	1
NATION IN NUMERICA	10	2.54	2.52	2.61	100		104	2.45		
9 JAP 10 M 1	60	140	150		(9	15	132	140	10	
	10	10	- 13			- 69	598	- 63	- 20	
	249	120	115	1.58	1.78	126	2.54	100	185	
NATES AND COENCIL	181	120	100	1.00	1.2	1/5	2.56	113	245	REED INVERTIGATION CONDENSATE SPECIFIC POWER
www.cores	201	20	10	2.01	112	181	228	2 2.02	100	
WERP	10	12	120	1.41		12	1.0	1.00	1.20	
ALLE FRAKINGHA	20	12	415	121		125	1.11	152	138	
TV/M	an	- 9.8	111	-	11.1	11	111	111	838	
TC#CT HUIT										
Ci anto	3.8	35	- 428	32	12		411	2.4	425	
a splee	28	2.5	105	2.5	023	12	2134	212	25	
lord advergebre	10	- 12	111	120	125	141	(2)		121	
17 Wher and Kerry promotion plant	10	125	101	10	100		7.83		120	
Teles	44	4.8	410	4.8	410		100	- 111	411	
IN PECIN LIGHT OR DOT M							- 100	- 20		
NUMBER OF COMPANY AND A DESCRIPTION	1.07		145	121	110	1.81	122	122	125	
PECHE IN PARTY ADD/Ted	50	2.20	2100	1.24	110		2.40	140	321	
RECORD AND THE MADER CACLE STREAMING	105	16	150	126	174	- CP	547	- 04	429	
PECHIC DOLLAR PARES, STRATLAS	1.0	10	1.20	121	1.3	181	IN	115	141	OF A D-INF PECK COMB COMMAND
ACCOUNT AND AND STATES	3.07	3.3	21.5%	2.81	1.6		2.11	3.0	225	1010
NECTIC ANNES AND WATER CACIE JANIANA	ar	10	146	131	105	đ	121	10	134	1
NECTIC COLLEGE PARENT, MERSY THAT	10	2.8	734	1.01	US	181	131	151	167	
PEOPLE IN PAPER BOUT of	5.0	12	210	2.11	2.28	2.64	5.55	2.00	1.0	
PECINE PARTE NEE BUTTE CHELL PROVINCY	1.07	16	111	CIII	1.00	d	426	- CE	10	. M
Contractor BORG	N/I	1.0	415	2.81	3.0	2.0	2.0	1123	454	
AND ATTEND SAFCING CATACITY OF AND THE				- 64		1.00	- 104	- 24	- 22	

AREA WISE SP ENERGY ANALYSIS


SEU DEVIATION ANALYSIS


		Ball Heat Rates
	Ł.	TG Cyale Real P
		Paller Efficie
	6	
		Castrikalia
	k.	Castrikalia
	- 6- E	
	1	Land breaking at
		Tabl Cashalla
	- K.	Re-seales Hable
HERMAL ENERGY		Corrected I and collection
	2	Tarkiar Ca
		HS Tragerator
	- k.	HSPermane
MONITORING	<i>k</i> .	SH Allemperatio
		RRN Traperate
	6	RH Allowyrra D
		Sector March
	- K.	7


ELECTRICAL ENERGY

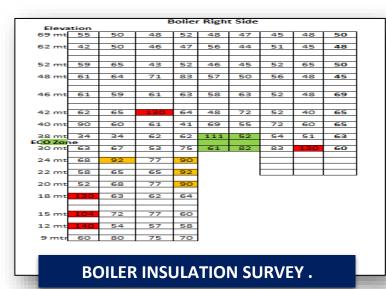
MONITORING

GMR KAMALANGA ENERGY LIMITED COMPARATION WITH POST OVERHAULING FULL LOAD GNR

GAR

Date and time: November-18

tus before incident



12. ENERGY MANGEMENT SYSTEM .

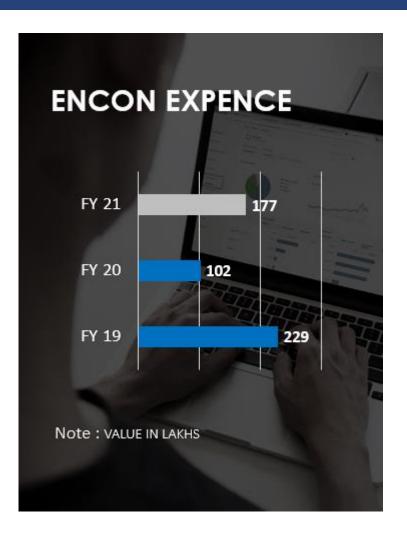
12.3 WORKMEN INVOLVEMENT THROUGH SGA.

- 1. Half yearly Boiler and turbine insulation temperature survey.
- 2. Furnace pressurization test for air in-leakage identification.
- 3. PA duct pressurization test for air in-leakage identification.
- 4. Monthly high energy Drain passing survey.
- 5. Instrument and service air leakage survey
- 6. Furnace velocity mapping.
- 7. Compressor FAD testing.
- 8. Illumination study.
- 9. Ventilation system audit.

	Date	05.08.2020
AUX HEADE	R DRAIN STATION (MIV)	
1 Aux header to condenser		>150
2 Aux header to condenser (steam trap)		>150
3 Aux header to ATM.	6 MTB AUX	>150
4 Supply MOV drain to ATM	HEADER DRAIN	70
5 BFPT steam supply before drain to ATM	STATION	75
6 BFPT Steam supply drain (trap) to cond.	STATION	63
7 BFPT Steam supply drain to cond.		57
8 Common drain to Atm		81
1 Atomising safety valve drain		53
2 Atomising line drain.	6 MTR Behind the	43
.3 Interconnection MOV before drain	aux header	66
4 Interconnection MOV before drain		78
1 CRH after mov (cond)(B)		>150
2 CRH after mov (cond) steam trap(B)		65
3 CRH after mov (ATM)(B)		58
4 AST after NRV (cond) (B)		80
5 AST after NRV (cond) steam trap (B)		115
6 AST after NRV (ATM) (B)		81
7 AST AFTER MOV drain (B)		84
8 AST header drain		73
3 AST header after MOV (A)		55
10 CRH header drain.	6 MTR	60
11 AST after NBV (ATM) (A)		61
12 AST after NRV (cond) steam trap (A)		55
I3 AST after NRV (cond) (A)		67
I4 CRH after mov. (ATM)(A)		91
15 CRH after mov (cond) steam trap(A)		33
16 CRH after mov (cond)(A)		117

HIGH ENERGY DRAIN PASSING SURVEY

Unit-2 Velocity Mapping of Boiler 2nd Pass													
UPPER BANK LTSH													
Hanger No	LHS Vall to 1st coil gap	1	5	10	15	20	25	30	35	40	45	RHS Vall to 1st coil	Average
Row A bottom	3.7	3.2	3.3	3.5	3.4	3.4	3.2	3.5	3.5	2.6	3.0	3.1	3.3
Row B bend top	0.7	13	0.6	0.9	1.0	- 11	1.2	13	1.2	1.1	- 11	13	- 11
Row B bottom	2.7	2.4	2.3	2.3	2.5	2.5	2.6	2.2	2.3	2.3	2.2	2.5	2.4
Row C	2.5	- 1,4	1.8	15	1.6	2.8	2.8	2.7	4.0	4.0	3.4	3.4	2.6
Row D	2.6	2.4	2.3	2.5	2.7	2.5	2.7	2.7	2.6	2.4	2.3	2.5	2.5
				MI	DDLE B	ANK LI	SH						
Hanger No	LHS Wall to 1st coil gap	1	5	10	15	20	25	30	35	40	45	RHS Vall to 1st coil	Average
Row A	3.6	1.6	2.3	2.0	2.1	2.0	2.1	22	1.8	1.9	1.6	3.8	2.2
Row B	3.1	15	1.8	2.0	2.0	1.9	1.9	22	2.2	2.3	1.8	4.0	2.2
Bow C	35	18	2.9	19	24	24	23	24	24	2.6	18	27	2.4



13. BUDGET ALLOCATION .

SL No.	Expenditure towards ENCON projects (Lakh)	Financial year
1	229	FY-19
2	102	FY-20
3	177	FY -21

Budget allocation w.r.t turn over = 0.05%

14.AWARD AND ACCOLADES

15. LEARNING FROM CII

GKEL participated in CII National level award for energy management in FY-20 and awarded as excellent energy management unit Which turns to be great motivational factor for work force towards energy conservation. It helped the organization in following aspects

Adoption of best practices in energy conservation

Adoption of best practice in environment aspects

KPI benchmarking

Motivations towards energy efficiency

National level recognition.

Employee engagement towards energy conservation

GKEL listed and reviewed 120 Nos best practices from CII portal from various business and registered 6 projects for future implementation

GMR KAMALANAGA ENERGY LTD

THANK YOU

We have rights to use national recourses but have no rights to waste it. Save energy save environment

